Stability of Hydrogen Compounds

Table 9.5 Standard Gibbs energy of formation, $\Delta G_{f}^{\ominus}/(kJ \text{ mol}^{-1})$, of binary *s*- and *p*-block hydrogen compounds at 25 °C

	Group								
Period	1 	2 	13 III	14 IV	15 V	16 VI	17 VII		
2	LiH(s) — 68.4	BeH ₂ (s) (+ 20)	$B_2H_6(g) + 86.7$	CH ₄ (g) — 50.7	NH ₃ (g) — 16.5	H ₂ 0(I) - 237.1	HF(g) — 273.2		
3	NaH(s) — 33.5	MgH ₂ (s) — 35.9	AIH ₃ (s) (— 1)	SiH₄(g) + 56.9	PH ₃ (g) + 13.4	H ₂ S(g) — 33.6	HCI(g) — 95.3		
4	KH(s) (— 36)	CaH ₂ (s) — 147.2	GaH ₃ >0	GeH ₄ (g) + 113.4	AsH ₃ (g) + 68.9	H ₂ Se(g) + 15.9	HBr(g) — 53.5		
5	RbH(s) (— 30)	SrH ₂ (s) (— 141)		SnH ₄ (g) + 188.3	SbH ₃ (g) + 147.8	H_2 Te(g) > 0	HI(g) + 1.7		
6	CsH(s) (— 32)	BaH ₂ (s) (— 140)							

Data from J. Phys. Chem. Ref. Data, **11**, Supplement 2 (1982). Values in parenthesis are based on $\Delta H_{\rm f}^{\Theta}$ data from this source and entropy contributions estimated by the method of W. M. Latimer, p. 359 of *Oxidation potentials*. Prentice Hall, Englewood Cliffs, NJ (1952).

Electron-Deficient Hydrides

Electron deficiency:

- Some say: electron deficient molecules are molecules with a central atom that does not have an electron octet
- BETTER: those molecules are called "<u>electron poor</u>"

 $"BH_3" + H^- \rightarrow BH_4^-$

 Electron-deficient compounds are compounds that cannot be explained by 'normal' 2-centre-2-electron bonds.

MO Diagram of BH₃

.

D _{3k}	E	$2C_3$	$3C_2$	$\sigma_{\mathbf{k}}$	2.S ₃	$3\sigma_v$		
A1'	1	1	1	1	1	1	-	$x^2 + y^2, z^2$
A2'	1	1	1	1	1	1	R_z	- ·
Ĕ	2	1	0	2	1	0	(x, y)	(x^2-y^2, xy)
A1"	I	1	1	-1	-1	1		
A2"	1	1	-1	1	1	1	z	
E "	2	-1	0	-2	1	0	$ (R_x, R_y) $	(xz, yz)

MO Diagram of BH₃

MO Diagram of BH₃

Reactivity of "BH₃"

Lewis acid base reactions:

"BH₃"+ H⁻ → BH₄-"BH₃"+ NMe₃ → H₃B-NMe₃ "BH₃"+ OEt₂ → H₃B-OEt₂

- BUT: BH₃ does not exist
- $BH_3 \cdot OEt_2$, an etherate of BH_3 is used as a reagent

Hydroboration

Hydroboration in organic chemistry:

 $"BH_3"+H_2C=CH_2 \rightarrow H_2B-CH_2CH_3$

 $\begin{array}{rcl} \mathsf{H_2B-CH_2-CH_3} \ + \ \mathsf{H_2O} \ \rightarrow \ \mathsf{CH_3-CH_3} \ + \ \ldots \\ \mathsf{H_2B-CH_2-CH_3} \ + \ \mathsf{H_2O_2} \ \rightarrow \ \mathsf{HO-CH_2-CH_3} \ + \ \ldots \end{array}$

 $2 \text{ LiEH}_4 + 4 \text{ BF}_3 \rightarrow 2 \text{ B}_2\text{H}_6 + 3 \text{ LiEF}_4 (\text{E} = \text{B}, \text{AI})$

Boranes are pyrophoric! They need to be handled under exclusion of air (oxygen).

Inert Atmosphere Techniques: Glove Boxes

Inert Atmosphere Techniques: Glove Boxes

Inert Atmosphere Techniques

Electron count:

B₂H₆ is electron deficient.

<u>3-centre-2-electron bonding of bridging H:</u>

HOMO - LUMO

LUMO - HOMO

Figure 1. He I (21.22 eV) photoelectron spectrum of B_2H_6 . nate: counts/s. Abscissa: ionization energy/eV.

Figure 3. He II (40.81 eV) photoelectron spectrum of B_2H_6 recorded in the 11.0–23.0 eV ionization energy region. No other bands were Ot observed at higher ionization energy. Ordinate: counts/s. Abscissa: ionization energy/eV.

Digallane: Ga₂H₆

 $1/n [H_2GaCI]_n + LiEH_4 \rightarrow H_2GaH_2EH_2 + LiCI, (E = Ga, B)$

Figure 5. ¹H and ¹¹B NMR spectra of a toluene- d_8 solution of gallaborane at different temperatures.

Digallane: Ga₂H₆

- Digallane is a volatile Ga compound
- Digallane can be 'decomposed' under the right conditions: Ga can be deposited
- Search for volatile metal/element compounds for Chemical Vapour Deposition (CVD)
- CVD can be used to deposit thin layers on a solid surface.
- CVD is important for semiconductors, e.g., GaAs.

Heavier Group 14 Hydrogen Compounds

- Silanes are structurally similar to alkanes, but the reactivity is very different.
- Si and B are related via a diagonal relationship in the periodic table.
- Silanes and boranes have similar properties: for example they are both pyrophoric.

 $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O; \Delta H = -1518 \text{ kJ/mol}$

- Silanes and boranes are both endergonic compounds.
- Heating of SiH₄ above 500°C will cause decomposition into Si and H₂

 $SiH_4 \rightarrow Si + 2 H_2; \Delta H = -34 \text{ kJ/mol}$

Silanes

Preparation (not from the elements!):

$$SiF_4 + LiAIH_4 \rightarrow SiH_4 + LiAIF_4$$
$$2 Si_2CI_6 + 3 LiAIH_4 \rightarrow 2 Si_2H_6 + 3 LiAICI_4$$
$$HGeO_3^- + BH_4^- + 2 H^+ \rightarrow GeH_4 + B(OH)_3$$

Higher silanes are easily cracked:

At 400 °C: 2 $Si_2H_6 \rightarrow SiH_4$, H_2

Properties:

Fig. 13.8 Boiling points of the straight-chain silanes, Si_nH_{2n+2} , and hydrocarbons C_nH_{2n+2} .

Silanes

Bond energies:	C–H 416 kJ/mol	Si–H 326 kJ/mol
	C–Cl 327 kJ/mol	Si–Cl 391 kJ/mol
	C–O 359 kJ/mol	Si–O 466 kJ/mol

Properties:

- Methane is chlorinated with difficulty (radical reaction)
- Silanes react explosively with Cl₂
- Methane is kinetically stable towards oxygen
- Silanes react spontaneously with air
- Methane is stable with respect to hydrolysis
- Silanes are readily attacked by water
- Catenation is more common for alkanes
- Higher silanes, germanes, stannanes and plumbanes are less common

Bonding in Silanes

	Energy levels of Ethane	Energy levels of Disilane	Energy levels in Ethene
LUMO	4.12 eV	–0.95 eV	1.44 eV
HOMO	-11.77 eV	-10.64 eV	-10.55 eV
ΔE	15.86 eV	9.69 eV	11.99 eV

- The C=C double bond is considered a functional group.
- One can consider the Si–Si bond to be a functional group because of the small HOMO-LUMO gap
- (absorption of light with wavelength >200 nm, which is the cut-off of transmission in air).

Group 15 Hydrogen Compounds

<u>Ammonia, NH₃: Haber-Bosch process</u>

Hydrazine, N₂H₆: Olin Raschig Process in industry

Preparation from a ca. 30-fold excess of ammonia and sodium hypochlorite

$$\begin{array}{cccc} \text{ClO}^{-} + \text{H}^{+} \rightleftharpoons & \begin{array}{cccc} \text{ClOH} + \text{HNH}_{2} \\ \text{H}_{2}\text{NH} + \text{ClNH}_{2} \end{array} & \begin{array}{cccc} \Rightarrow & \text{H}_{2}\text{O} + & \text{ClNH}_{2} \text{ (rapid)} \\ \Rightarrow & \text{HCl} + & \text{H}_{2}\text{NNH}_{2} \text{ (slow)} \text{ (} \longrightarrow & \text{Cl} + & \text{H}^{+} \text{)} \end{array} \\ \\ \text{ClO} + & 2\text{NH}_{3} & \begin{array}{cccc} \Rightarrow & \text{N}_{2}\text{H}_{4} + & \text{H}_{2}\text{O} + & \text{Cl} \end{array} \end{array}$$

Hydrazine

- Hydrazine was used as a rocket fuel.
- The Apollo mission used a reaction between N_2H_4 and N_2O_4 (products H_2O and N_2)
- Hydrazine forms a stable monohydrate dehydration is difficult.
- Anhydrous hydrazine is usually produced via reactions such as:

 $2 \operatorname{NH}_3 + [\operatorname{N}_2\operatorname{H}_5][\operatorname{HSO}_4] \to \operatorname{N}_2\operatorname{H}_4 + [\operatorname{NH}_4]_2[\operatorname{SO}_4]$

Gauche conformation

Heavier Group 15 Hydrogen Compounds

- Phosphine (PH₃), arsine (AsH₃), stibine (SbH₃)
- Phosphine is an extremely toxic, colourless gas
 - Lower solubility in water than ammonia
 - Neither Brønsted acidic or basic
 - Excellent Lewis base
 - Strong acids can protonate phosphine to PH₄⁺
 - Alkali metals can reduce phosphine to PH₂⁻

Marsh Test

Group 16 Hydrogen Compounds

- Sulfane (H₂S), hydrogen selenide (H₂Se), and hydrogen telluride (H₂Te)
- Toxic, foul-smelling gas, part of sour gas.
- It is used to prepare sulfur via the Claus Process

 $\begin{array}{rl} H_2S \ + \ 3/2 \ O_2 \ \rightarrow \ SO_2 \ + \ H_2O \\ SO_2 \ + \ 2H_2S \ \rightarrow \ 3/8 \ S_8 \ + \ 2H_2O \\ \hline 3H_2S \ + \ 3/2 \ O_2 \ \rightarrow \ 3/8 \ S_8 \ + \ 3H_2O \end{array}$

<u>Combustion Chamber</u> 1st reactor: 300 °C, Co/Mo catalyst

 2^{nd} reactor: 220 °C, Large surface area Al_2O_3